\qquad

Purpose: In this problem set, you will explore the properties of absolute value functions. In particular, you will practice solving absolute value equations and inequalities.

Definition: The absolute value function can be defined as

$$
f(x)=|x|= \begin{cases}\quad & \text { if } x>0 \\ & \text { if } x<0\end{cases}
$$

Generally, we want to interpret the absolute value as a distance. The absolute value $|a-b|$ give the distance between a and b on a number line without needing to know which is larger to start with.

1. Use an absolute value inequality to describe all numbers within a distance of 3 from 2 .
2. Goal: Solve the absolute value inequality $3 \geq|x+1|$.
(a) Sketch a graph that might help you. Guess the solution set. Write down the guesses from everyone in your group. Check with Sarah before proceeding.

(b) Follow-up with the algebra to confirm or deny your guess. Does your group agree?
3. Goal: Solve $2>|x|-4$.
(a) Sketch a graph that might help you. Guess the solution set. Write down the guesses from everyone in your group. Check with Sarah before proceeding.

(b) Follow-up with the algebra to confirm or deny your guess. Does your group agree?
4. Goal: Solve $15<3|2 x-1|$.
(a) What's your group's plan to solve this absolute value inequality? Check in with Sarah.
(b) Solve it!

5. Reflection Questions:

(a) When will your solution to an absolute value inequality be two separate intervals? (You may want to draw a picture.)
(b) When will your solution be a single interval? (You may want to draw a picture.)
(c) Suppose your friend (who DESPISES graphing) is trying to solve $3 \geq|x+1|$ which you solved in question 2. They've done this so far:
i. First, they solved $|x+1|=3$, which gave them $x=-4$ and $x=2$.
ii. Computed $|-5+1|=4$, and decided all $x<-4$ aren't solutions.

Do you think they have a reasonable strategy and made a good conclusion? What should your friend do next?
(d) Solve $4<\frac{1}{3}|x+2|$
(e) Solve $0<3|2-x|$.

